Elastic energy storage in unmineralized and mineralized extracellular matrices (ECMs): a comparison between molecular modeling and experimental measurements.

نویسندگان

  • Joseph W Freeman
  • Frederick H Silver
چکیده

In order to facilitate locomotion and limb movement many animals store energy elastically in their tendons. In the turkey, much of the force generated by the gastrocnemius muscle is stored as elastic energy during tendon deformation and not within the muscle. As limbs move, the tendons are strained causing the collagen fibers in the extracellular matrices to be strained. During growth, avian tendons mineralize in the portions distal to the muscle and show increased tensile strength, modulus, and energy stored per unit strain as a result. In this study the energy stored in unmineralized and mineralized collagen fibers was measured and compared to the amount of energy stored in molecular models. Elastic energy storage values calculated using the molecular model were slightly higher than those obtained from collagen fibers, but display the same increases in slope as the fiber data. We hypothesize that these increases in slope are due to a change from the stretching of flexible regions of the collagen molecule to the stretching of less flexible regions. The elastic modulus obtained from the unmineralized molecular model correlates well with elastic moduli of unmineralized collagen from other studies. This study demonstrates the potential importance of molecular modeling in the design of new biomaterials.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bisphosphonates inhibit prostate and breast carcinoma cell adhesion to unmineralized and mineralized bone extracellular matrices.

The molecular mechanisms by which tumor cells induce osteolytic metastases are likely to involve tumor cell adhesion to bone as well as the release of soluble mediators from tumor cells that stimulate osteoclast-mediated bone resorption. Bisphosphonates (BPs) are powerful inhibitors of the osteoclast activity and are, therefore, used in the treatment of cancer-associated osteolytic metastases. ...

متن کامل

The effects of prestrain and collagen fibril alignment on in vitro mineralization of self-assembled collagen fibers.

Collagen fibers are under tension in most extracellular matrices both prior to and during normal loading. This tension not only provides mechanical advantages, but also appears to establish a loading basis for the stimulation of mechanochemical transduction processes. The presence of tensile loads applied to collagen fibers also results in physical alignment of the collagen fibrils along the te...

متن کامل

Adhesion to Unmineralized and Mineralized Bone Extracellular Bisphosphonates Inhibit Prostate and Breast Carcinoma Cell

The molecular mechanisms by which tumor cells induce osteolytic metastases are likely to Involve tumor cell adhesion to bone as well as the release of soluble mediators from tumor cells that stimulate osteoclast mediated bone resorption. Bisphosphonates (BPs) are powerful Inhibitors of the osteoclast activity and are, therefore, used In the treatment of cancer-associated osteolytic metastases. ...

متن کامل

Hydrogels with tunable stress relaxation regulate stem cell fate and activity

Natural extracellular matrices (ECMs) are viscoelastic and exhibit stress relaxation. However, hydrogels used as synthetic ECMs for three-dimensional (3D) culture are typically elastic. Here, we report a materials approach to tune the rate of stress relaxation of hydrogels for 3D culture, independently of the hydrogel's initial elastic modulus, degradation, and cell-adhesion-ligand density. We ...

متن کامل

The Role of Type I Collagen Molecular Structure in Tendon Elastic Energy Storage

In order to facilitate locomotion and limb movement many animals store energy elastically in their tendons. The formation of crosslinked collagen fibers in tendons results in the conversion of weak, liquid-like embryonic tissues into tough elastic solids that can store energy and perform work. Collagen fibers in the form of fascicles are the major structural units found in tendons. The purpose ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of theoretical biology

دوره 229 3  شماره 

صفحات  -

تاریخ انتشار 2004